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THE JOHNS HOPKINS UNIVERSITY
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LAUREL, MARYLANO

ABSTRACT

URLIM, a unified radome limitations computer program, has
been developed to aid the radome design engineer by providing a
definition of the maximum flight performance capabilities of ra-
dome materials. URLIM numerically determines the response oi the
radome to aerodynamic heating and loading. It computes the Follow-
ing as functions of trajectory time: thermal stress; radar bore-
sight error rates; missile-radome attachment stresses causeC by
maneuvers, pressure, and drag forces; and the onset of rado'e
melting. The basic output of the program is a notation of traje.-
tory time at which the radome reaches its design limitatiors.
Many options are available to the user of the URLIM progratm that
provide a wide variety of analysis capability. For this .e.son,
URLIM may also be considered as a general purpose aerodyý,amic
heat transfer program as well as a specific purpose radoire limita-
tions program. Volume 1 of this report presents the theoretical
background of the analysis techniques used in URLIM; Vo' me 2
provides a detailed explanation of how to use URLIM.
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PREFACE

The purpose of this volume is to present the theoretical
background of the analysis techniques used in the URLIM program.
This discussion will consist of three basic parts: first, it will
present the mathematical relationships between variables, along
with their assumptions and limitations; second, it will describe
the numerical techniques employed by the program to solve the vari-
ous equations; third, it will outline the data management tech-
niques used to finr' the various solutions. The Zirst sction de-
scribes the physical models that are the analytical basis of the
program. As such, this section provides a view of URLIM that will
enable the prospective user to asse~ss the a:curacy and completeness
of the facilities provided in the program. The last two sections
will provide an overview of the URLIM program organization that may
give the interested user an insight to the generality of the code.
Moreover, as errors will inevitably occur, this level of under-
standing of the program's organization will serve as an aid to de-
bugging.

I
I
I
I
I
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1. THEORETICAL BASIS

HEAT TRANSFER -- CONDUCTION

The unified radome limitations computer program (URLIM) was
developed to predict heat transfer within a solid. Fundamentally,
the determination of the time-dependent temperature field within
a closed volume will depend on the rate of heat conducted orthog-
onal'.y across the surface of the volume and the rate of change of
internal energy within the volume. We will assume the arbitrary
case of a volume V with some temperature existing at every point
within V. In the absence of any effects from electric or magnetic
fields, surface tension, or chemical reactions, the energy in a
solid is a function of its temperature such that

diu . (oc pT)

where

du/dt is the time rate of change of internal energy in a
differential volume, dV,

p is the density of the material,

Cp is the specific heat of the material.,

T is the magnitude of the temperature field at the dif-
ferential volume dV (i.e., the temperature of dV),
and

t is the independent variable time.

The movement of heat through any point in the volume is related to
the gradient of the temperature field within the volume; that is,

j Q -- kVT ,(2)

where

Q is the heat flow vector,

-9-
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VT is the temperature field gradient vector, and

k is the proportionality factor that can only be a func-
tion of temperature (i.e., k = f(T)).

Equation (2) states that heat flows within a solid in the opposite I
direction to the temperature gradient and that the magnitude of
that flow is related by the material property k, which may be
temperature dependent.

With Equation (2) describing the flow of heat at any point
in the volume, the divergence of the vector Q is written as

V.QU- Of t , (3)

and is thought of is the chaage in magnitude of heat flow with re-
spect to any poin, in the volume. In a conservative system (as I
has been zssumed here) this spatial change in heat flow at a point
in the volIe is equAl to the temporal change in internal energy
of that point. Using iqs. (1) and (3) the following equation rep-
resents this statewz:. of the conservation of energy:

a(Pc' T)V. kVT *- ... (4a)

The material property product (pcp) is allowed to depend explicitly
only on temperature (i.e., pcp - f(T)), so that

OkVT -PC _T (4b) 1-at
The operator V is the vector gradient operator and must be

represented in an orthogonal coordinate system. It can have thefollowing definitions.

Cartesian Coordinates: I

-a + J + (5)

-.0-
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AM A

where x, y, and z are the unit vectors in each of the coordinate
directions.

Cylindrical Coordinates:

a - a + 1
V r r r D66 a (6)

where

r is the radial coordinate,

e is the circumferential coordinate, and

z is the axial coordinate.

Spherical Coordinates:

- a A+! 1 8 A

ar r f#+ -snfT (7)

where

r is the radial coordinate,

f is the co-latitudinal coordinate, and

0 is the longitudinal coordinate.

Equation (4) is the governing relationship between the
spati.il 'inz temporal changes of temperature within the body. Spe-
cific so±1tions to the sets of differential equations indicated in
Eq. (4) depend on the 3iecification of the conditions that exist
at the boundary surface of the volume and whether or not there are
independent hcat sources or sinks present within the volume. Sec-
tion 2 of this volume will show how the general relationships ex-
pressed here are modeled and the temperature field solved for as a
function of time.

HEAT TRANSFER -- CCNVECTION

In situations where the volume being considered is subjected
to a fluid flowing at its surface, heat transfer will occur across

S~-11i-
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the surface due to conduction within the fluid, viscous friction
dissipation within the fluid near the surface, and molecular mo-
tion in the boundary layer (i.e., convection). In general, the
static temperature of the fluid and the surface temperature of the
solid will be different and there will be a potential for moving
heat across the surface. Figure 1 shows a schematic diagram of a
fluid flowing past a solid surface with an appropriate coordinate
system and with the important parameters listed. If the bulk of
the fluid stream in the vicinity of the surface is hotter than the
surface, there will be a spatial variance of temperature through
the stream as showr in the figure. Due to the viscous effects of I
the fluid, the fluid particles at the wall surface will be assumed
stationary with respect to the wall. The velocity and temperature
variances as one travels away from the wall are as shown in the
figure. The points at which the velocity and temperature of the
gas reach 99Z of their freestream values describe the boundary
layer edge; the two points (one for temperature and one for veloc-
ity) will be ass, id to coincide spatially at every point along I
the body. The maximum boundary layer temperature is called the
"recovery" or "adiabatic wall" temperature and is defined an the
fluid temperature where the derivative with respect to the local U
wall normal (DTf/ay) is zero.

Predictions of the aerodynamic heating as described so far
involve calculating the recovery temperature and estimating the I
proper dependence of the convective flux (q) on the recovery tem-
perature. In the discussions that follow, the basic relation
shown below will be used to define the heat flux per unit area to I
the solid surface:

;- hi(ir - iw) (8) 1

where 1
hi is a heat transfer coefficient that will relate heat

flow to a difference in enthalpy, I
ir is the enthalpy of the fluid at the recovery tempera-

rture, andI

i is the enthalpy of the fluid at the wall temperature.

Enthalpy, a valid material property, is defined as

i W U + pv, £
where u is the internal energy, p the pressure, and v the
specific volume (reciprocal of density). Enthalpy is, in general,

-- 12 -
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Freestream condition

Density - p.0

Viscosity - A. Shock wave for compressible supersonic flows;
Temperature - Too implies local fluid properties that will depend
Pres3ure - Poo on coordinates X, Y and body shape

i -(See detail below, left)

External surface of body

V.. First internal nodes-W X
Body coordinates

Local flow condition • Velocity y) Boundary
STemperature (TO) layer edge

Local coordinates
y Boundary layer edge

x Heated surface at Tw VelocityS~~~0.99 VI elct

Two thermal nodes with similar local flow Boundary
at boundary layer edge layer edge

I- -For a heated wall

For an adiabatic wall

3To Fluid temperature, TfITw T; Trecovery

Fig. 1 Terminology for Aerodynamic Heating Boundary Conditions

I
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dependent on temperature and pressure. We will assume knowledge i
of the fluid properties, including enthalpy versus fluid tempera-
ture (Tf) and fluid pressure (Pf), so that it remains to calcu-
late hi and the recovery enthalpy. In the following discussion
the fluid will be assumed to be a gas (usually air).

With a compressible fluid as the medium there is the possi-
bility that the freestream velocity is larger than the acoustic
velocity in the gas and a shock wave may be present in the vicinity
of the wall surface being considered, If this is the case, the
local boundary layer edge velocity (Vl) must first be calculated. 3
This caiculation involves a priori knowledge of the ratio of pres-
sures across the shock wave as well as the ratio of Mach numbers.
(The Mach number (M) is the ratio of actual gas velocity to the
acoustic velocity of the gas at any point.) Further, the distance
from the shock wave to the local body position and the shape of
the body have effects on the Mach and pressure ratios mentioned

here. In other v, 1s,

a1/P - f(Mox) and (9)

H /M a g(Mox) , (10)

with x iMl4atlng the position along the body, 1 indicating the
local condition, 0 indicating the freestream condition, and the
other items as shown in Fig. 1. Since energy is conserved across
a shock wave, the following equation will hold: 3

1 2 2

wh.i-h simply suas the sensible and kinetic energies on either side
of the sheik wave. If the gas is assumed to be ideal except for a
compressibility factor (Z) defined as

Z a pv/RT,

then the sonic velocity (a) can be shown to be I

a- ygR, (12)

where I
y is the ratio of specific heats (cp/cv) for the gas,

which are defined as 3

-14- 3
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c M di/dT and
p

c - du/dT
v

The gas properties y and Z will be assumed to be known as func-
tions of temperature and pressure. Using the above oofinitions
Eq. (11) is written as

y 1Z1 RT1 M1 2 V1 2
11 + 2 = o +-- "(13)

2 0 2

With knowledge of the freestream conditions of temperature and
pressure, the gas properties i, y, Z, and the functions indicated
by Eqs. (9) and (10), Eq. (13) is seen as an implicit equation in
T1 .

When Eq. (13) is solved for T1 , the local flow conditions
are then fully defined and the recovery condition is next con-
sidered. The recovery temperature within the boundary layer must
lie somewhere between the total temperature and the local boundary
layer edge temperature. Thinking in terms of enthalpy instead of
temperature this notion is expressed as

V1
2

i =i 1 + r V1 2 (14)

where r is the recovery factor, defined as

Tr 0O

r r 0 (15a)

To determine r it is necessary to resort to empirical correla-
tions of measured data. Reference 1 states the following relation-
ship for r:

r - for laminar flow (15b)

Ref. 1. R. E. Wilson, Handbook of Supersonic Aerodynamics,
Sections 13 and 14, "Viscosity" and "Heat Transfer Effects,"
NAVORD Report 1488, Naval Ordnance Laboratory, White Oak, MD,
August 1966.

-15-
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r - %IJjw for turbulent flow, (15c)

where ?r* is the Prandtl number of the airstream evaluated at the
refere-ace temperature (reference denoted by *) and the Pr number is

Pr - cp u/k,

P being the viscosity. We have now traded one unknown for another;
that is, the recovery factor is defined in terms of another un-
known condition - the reference temperature (T*). The reference I
temperature is a fictitious boundary layer temperature that is used
to evaluate the physical properties of the stream. Eckert (Ref. 2)
proposes the following relationship for determining the reference I
condition in terms of enthalpies:

i* M (I + il + 0.22 r V1 2)/2 (16) II
which is seen to be an average of enthalpies and a kinetic energy
factor. Equation (16) now involves the recovery factor so an ex-
plicit solution for r from Eqs. (14), (15), and (16) cannot be
made; the relationships must be solved simultaneously.

The results uf solving Eqs. (14) through (16) are the
reference enthalpy (i*) and the recovery enthalpy (ir). By use I
of the fluid property tables the reference and recovery enthalpies
can be used to obtain the reference and recovery temperatures (T*
and Tr, respectively). At this point we can turn to heat trans-fer correlations to evaluate the hi of Eq. (8). The Stanton num-
ber is defined as

h!

-*- IV(ir iw) P*V-

Ref. 2. E. R. G. Eckert, "Survey -f Boundary Layer Heat
Transfer at High Velocities and High Temperatures," Technical Re-
port 59-624, Wright Air Development Center, Dayton, OH, April 1960.

- 16 -
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and Colburn (Ref. 3) notes that
I

St - cf (Pr*)o . (18)

The term cf is the friction factor and is further defined as

WT

Cf a WV12/2g , (19)

where

T is the stream shear stress at the wall surface,
w2

9c is 32.174 ft-lbm/lbf-s 2, and

•• is an empirical constant.

Experimental correlations (Refs. 2 and 3) have shown that

cf = C Rea (20)

where C and a are again empirical constants, and Re is the
Reynolds number (pVix/p). Combining Eqs. (17), (18), and (20)
gives

h
-- =T CRe Pr* . (21a)

Using the definitions for Re and Pr, and the following for Nusselt
number:

Nu - (c x hi)/k

Ref. 3. A. P. Colburn, "A Method of Correlating Forced Con-
vection Heat Transfer Data and a Comparipon with Fluid Friction,"
Trans. AIChE, Vol. 29, 1933, pp. 174-210.

5 -17 -
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the general relationship

Nu * C Rea Pra (21b)
~1

can be written where the constants a and B are different from
a $ and 0' and are given values according to Table 1.

Given the position on the body (x); the previously calcu-
lated values for Tr, 7*, and V1 ; and the stream property func-
tions; Eq. (21) or (21a) is solved for hi and Eq. (8) is used to [
find the heat flux to the wall (qIw).

In summary, the following steps are required to calculate I
1. Know i, Z, y, Pr, and v for the stream fluid versus

T and P; S
2. Know the Hach and pressure ratios (Eqs. (9) and (10)) Ibetween the freestream and the local boundary layer

edge;

3. Calculate the local boundary layer edge static tempera-
ture (T1 ) from Eq. (13); I

4. Solve for the recovery factor (r), recovery temperature
(Tr), and reference condition (T*) (Eqs. (14), (15), I
(16));

5. Using properties at the reference temperature, solve for
hi using Eq. (21); and

6. Substitute hi, ir, and iw in Eq. (8) to solve for qw"

Whether the laminar or turbulent coefficients in Table 1 are used
depends generally on the value of the Reynolds number; low Re im-
plies laminar flow and high Re implies turbulent. The transition $
value of Re must be decided a priori.

In the case of heating of a surface that is normal to the
freestream (i.e., stagnation points) the methods of Squire and
Sibulkin are used (Refs. 6 and 7). In these techniques it is

Ref. 6. S. Goldstein, Modern Developments in Fluid Dyniamics,
First Edition, Vol. 2, Oxford Univ. Press, Londor., 1938, p. 631.

Ref. 7. M. Sibulkin, "Heat Transfer near the Forward Stag-
nation Point of a Blunt Body," J. Aeronautical Sciences, August
1952.

-18- J
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possible to show that if t*. square root of the stream velocity
gradient at the stagnation point is"incorporated in the constant
C (Table 1) then proper correlation with measured data is ob-
tained. In these stagnation point heating cases, it was fou1,i
that the term

Vgrad V0D/V*Q

was required in the constant C of Eq. (21) where 3
V1  is (3V/3y)Iy - 0, or the velocity gradient of the

stream evaluated at the wall (c.f. Fig. 1), 1
D is the characteristic diameter of the body, and

V is th, freestream velocity. 5
The dependence of V' on Mach number has been derived for a real
gas using Newtonian flow a3sumptions. This plot is given in
Fig. 2 and will be required for use when stagnation point heating
is being considered.

The aerodynami: heat transfer relationships discussed above
are solved in the SAERO routine where the final result is simply
the temperature for the surface node in question. The temperature
is solved for by making an energy balance at the heates surface !
per unit area as follows (c.f. Fig. 1):

4

qwqrad w ccw T + qcon

where: I
a is an independently specified heat flux to the

rad surface,

Tw is the wall temperature,

4con is the heat conducted from the surface Into the
con material below the surface,

a is the Stephan-Boltzmann constant (see the follow- I
ing section on radiation heat transfer), and

Lw ic; the total normal emissivity of the wall surface. !

-20- 5
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3.0 - 48

250 0 o Experimental data 4
0 4

2.02

1.524C
0.

1.0 Vgrad, Newtonian theory

0.5 -P/P. - 8

100 0
1 2 345

Mach number, M.

IFig. 2a Stagnation Point Velocity Gradient Function Comparison
of Newtonian Theory with Experimental Data

1.2 1 11 1 1 1 1 - I 1 1 - 0
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1.0- 500

I ~ j0.8 -Vgad, Real gas - 400....

" 06 -300~
0.6 CL
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Fig. 2b Real Gas Effect on Stagnation Point Velocity Gradient Function
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In this relationship, 4w (the aerodynamic heat transfer to tae
wall) is explicitly related to Tw through the enthalpy iw (c.f.
Eq. (8)). qrad is independently specified and is therefore a con-
stant at any instant in time. Tw4 is an obvious function of Two
and qcon depends on Tw as follows:

4con " k (Tw- Ti)/Li W 3

where Ti is the inner wall temperature within a node at a distance
Lw-i from the surface. The energy balance equation above is then
seen as an implicit equation in Tw, if it is assumed that Ti is
known. At each time increment in the transient solution technique
the temperature Ti from the previous time point is used so that the I
conduction equation just above can be solved for qcon and the en-
ergy balance equation can be solved for Tw. 3

At thL. point we will also note that the solution for r,
Tr, and T* (Eqs. (14), (15a), and (16)) is made an explicit rela-
tion in the same way as the internal conduction equation. That
is, the term r (Eq. (15a)) is used from a previous time step so
that ir (Eq. (14)) and i* (Eq. (16)) are found without the needfor a simultaneous solutiJon of the three equations. 3
HEAT TRANSFER - RADIATION 3

Every substance at any temperature above absolute zero
emits electromagnetic (EH) wave energy that will cause heat to be
absorbed by any other surface upon which the energy impinges.
Heat is, on an atomic level, a measure of the intensity of molecu-
lar vibrations. The molecules in a solid are groups of positive
and negative electrical charges so thcir vibration at a surface
will cause EM radiation. Conversely, EM waves of the proper fre- I
quency impinging on a surface will excite the molecular vibrations
of that surface. In 1879 Stephan observed the following relation-
ship for the energy flux radiated by a body at temperature T with !
a perfect surface (that is, a surface that emits the EM radiationwithout loss):

Eb -T 4  . (22a)

Equation (22a) was also theoretically derived by Boltzmann and is
termed the S-ephan-Boltzmann law; a is the Stephan-Boltzmann

-22- 3
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constant. For real surfaces, the amount of energy radiated is
less than the amount given by Eq. (22a) and an emissivity factor
(e) is generally incorporated:

1 4
E - cTT . (22b)gt

The subscripts b and g in Eqs. (22a) and (22b), respectively,
represent "black-body" (perfect) and "grey-body" (imperfect) sur-
faces, respectively. Because solid bodies are aggregates of
molecules that are subject to the laws of quantum physics and
quantum probabilities, the energy emitted at a particular tempera-
ture will be distributed over a wide range of wavelengths; i.e.,
the surface molecules vibrate over a range of frequencies. In
1900 Plank derived the following relation for the energy emitted
at a specific wavelength by a body at a tempezature T (c.f.
Chapter 5 of Ref. ')

I E (23)

Ib exp(C 2 /AT) - 1

where C1 and C2 are constants. Equation (22a) is then seen as an
integration of Eq. (23) over all wavelengths; i.e.,

E = aT4  00 E ~ dX aC____5 _

b b ] exp(C 2 /XT) -f

10 0

The implication of Eq. (23) is that for real surfaces the
emissivity may, in general, exhibit a dependence on X and T
since a surface could be more emissive at one wavelength than an-
other. For a surface exposed to the EM radiation from another hot
body the fraction absorbed (a) is related to the fraction reflected
(r) and transmitted (T) by a simple expression of the conservation
of energy:

Ref. 8. F. Kreith, Principles of Heat Transfer, Second Edi-
tion, Section 5, International Textbook Co., Scranton, PA, 1965.
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where

a is the absorptivity,

T is the transmissivity, and

r is the reflectivity,

all of which may depend on T and X.

In practical situations where radiation heat transfer is
significant, the range of temperatures are such that the wave-
lengths of the EM energy involved are roughly between 0.5 x 10-6
and 20 x 10-6 m. This EM waveband is termed the infrared (IR)
bard. A simplifying assumption that will be made here is that all
real materials hn values of r, c, and a that are constant
over the IR bAnd and can depend only on the temperature of the
surface. Further, the so called grey-body assumption will be
made; that is, at a given temperature the emissivity of a material
will be equal to the absorptivity. Given these assumptions, the
net exchange of heat energy between the two surfaces shown below
can be described.

S~T1

d

T2

Let T1 >T2

it is desired to know the net heat flux per unit area
( 4net) across the imaginary plane spaced between the two given
planes. This flux will be the total radiated heat per unit area
from the surface at Tl less the heat radiated from the surface at
T2 plus a consideration for the energy reflected at each surface.
In algebraic terms:
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caT - c°T.4 + (1 - )eaT 2 4

a)- caTl 4 + (1 - a) 2 cOT1
4 _ (1 - a) 2oT2 4 + .. ( (24)

The first two terms are the primary radiation terms, the third
term represents the heat radiated by surface &" but reflected at
surface 1, the fourth term is the heat similarly reflected from
surface 2, and the successive terms represent the continuing re-
flections that proceed indefinitely. Equation (24) can be simpli-
fied to:

00

4net coT 14 T24 + TI4 (1 _ )n (_i)

n-1

- T2
4 E (1- _)n (_)n , (25a)

or

;ne -cc (T 1 4 - T 2 4) (1 - c)n (_,)n *(25b)

n-0

The infinite sum is equal to:

41 _ a)n 4-i)n _ 1--- (26)I n=1

(-)-0 (6

3 Using the assumption that a - c, and

3 T1  - T24 P 4 f3 (T 1 - T2 )

-25-
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W+% then Eq. (25a) becomes

-o3
ne ( T (T - T (27a)

where T3 - (T1 + T2 ) (T 12 + T2 2) 2

If we now consider the distance between the surfaces (d)
aiid regrite Eq. (27a) as

4e 2 _j) (T1 d 2  (27b)

then the term in the square brackets can be regarded as the "ef-
fective" thermal condactivity of the space (d) between I and 2;
i.e., I

qnet l eff .,

with j

coT'3 d 1
keff (2-' " (27c)

The above treatment is for paralle], infinite plates but I
similar analyses can be done considering the geometrical differ-
ences for arbitrary surfaces and the result is to add another fac-
tor called the view factor (F) to Eq. (27b); iLe.,

k eff I (2 -e) (27d)

Values of F have been tabulated for various conventional surface

arrangements; Ref. 8 gives some typical values.
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While Eq. (27d) gives an effective conductivity for a
linearized temperature function, Eq. (25b) could just as well be
written

f o(T - T

with

£eff ' c/(2 - c).

In Section 2 of this volume the nolutions to these rela-
tionships will depend on having the values ceff mentioned above
supplied a priori.

THERMAL STRESSES

Subroutines in URLIM can calculate thermal stresses in
arbitrarily defined cylindrical wall sections. The method em-
ployed is that of Rivello (Ref. 9) and is briefly described here.

A cylinder of infinite length subdivided into n concentric
cylindrical sections i3 shown schematically in Fig. 3. Also shown
in Fig. 3 is a definition of the terms used in this discussion.
The following assumptions are made:

I 1. The elastic modulus relating the stress in the material
Lo the strain is constant within each region.

2. Poisson's ratio is constant throughout all regions.

3. The materials that may make up the cylinder are iso-
tropic.

4. The cyltnder is restrained from motion in the axial
direction; i.e., the axial strain is zero at all
values of r.

5. The radial distribution of temperature is known at all
values of radius.

Ref. 9. R. M. Rivello, "Thermal Stress Analysis of Sand-
wich Cylinders," APL/JHU TG 721, August 1965.
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Tm @ rm 
I

Ui1
T3 r
T2 @ r2
Tj @ r

OF

NOTES:
*Total wall thickness (bn+1 - b1) is divided into n arbitrarily sized reulions,1
creating n+1 Interfaces.

*Temperatures are provided at m arbitrarily spaced radius values and are~ constant
with respect to the axial and circumferential directions.

*Radial displacemen~ts from an initial isothermal state occur for ea.h inefce, u1*
*Mechanical properties are assumed constant within regions at values that are

temperature averaged with respect to the radial temperature variance.

Fig. 3 Thermal Stress Geometry and Nomenclature
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If T(r) is the temperature at radius r and To is the uniform tem-
perature for the cylinder at which no stresses are present then
T - T(r) - To will define the variable T in the following devel-
opment.

The radial displacement of any point within the ith region
of the cylinder in Fig. 3 due to the temperature gradient T is
(from Ref. 10)

1+ V 1 rbi1

ul -- (*T)r dr + C r + -- A r (28)
l V r bf i'l r

The radial (r), tangential (e), and axial (z) stresses are given
(respectively) as

-E r1Er E

r 1- iv l2 (cET)r dr + ..L.. ill. :i-z j (29)
r E 1 2a~ dr +1 + v 1 - 2v- 2-IOri I"-vrbf r

SEi 1 r (aT)r dr (aT)Ei

Se i .( +Cir2 ) and (30)
l +v 1-2v 2

I(aT)E i 2vEiCt, 1

v+ (1 + v)(1 - 2v) (31)

In these equations Ci, 1 and Ci, 2 are constants of integration that
apply to the ith region.

Ref. 10. S. Timoshenko and J. N. Goodier, Theory of Elastic-
ity, McGraw-Hill, New York, 4-951.
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The coefficient of expansion has been brought under the
integral sign in writing these equations since it is always per-
missible to consider aT (the unrestrained strain due to tempera-
ture) as a single quantity. As a result a need not be constant
over the range of temperature changes.

Since there are n regions,,a total of 2n constants of inte-
gration must be found. These constants are determined so that
equilibrium and compatibility are satisfied on the faces and inter-
faces of the layers. Equilibrium on the inner and outer faces
requires that

arbl - -P1  (32)

and

ari Pn+l ' (33)

n+l

where P, and Pn+l are the pressures on the inner and outer faces.
At each of the interfaces the equilibrium condition,

Or il b i aar +1bil , w-1 to (n - 1) ,(34)

and the compatibility condition, I

i , i - 1 to (n - 1) , (35) 1

must be satiofied. Substituting Eqs. (28) and (29) into Eqs. (32)
through (35) gives

( 1 ) IPl(l+v)-- - -- , (36)
130 2v l,1 bl2 I,2 E1
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+ v) pn+1 (37)2v) C., (bn1) 2 C, 2  (b 2 n(bnl 2 N

1 Eli+i +
1 (-.1-2v) C11  (b1+i 2  1,2 E E1(1 -2v) 1+1,1

i+l 1,2 - (1 + V) --- ; i-l,2,...,(n-1), (38)Ei~bi~i)(b±i+)

U and

i+1 -C i+l,I (b ) 2

-- (1 + v) ( 1 )2 ; iil,2,...,(n-l) (39)

I where
( Ii+l

w Ai b I--' • (aT)r dr 
(40)

ISolution of the 2n simultaneous equations generated by
Eqs. (36) through (40) gives the Ci 1 and C coefficients. Sub-
stitution of these into Eqs. (29) tArough (W yields Ori , oU and

IUzi for restrained ends.

The resultant axial force for restrained ends is

n b i+1

R - 2wi E a r dr

I - 31-
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which, by using Eq. (31), becomes

n E bbi+l (aT)r dr- 2vECil i+l dr
V f - (1 + V)(I - 2v) f

b i
From Eq. (40) we find

n 2
R ( ~vE C i

(1+ vll -+) 2v2
-2EA, - 1L (bi) - b (41)(I +vI

To determine the axial stresses for unrestrained ends we determine
the stresses due to an axial force of -R and superimpose these upon I
the previously determined stresses. The stresses due to -R can be
shown to be

EiR
a~~c z 0; aora0

It~~~ ~ ~ Ej[buQ 2

In the ith region the radial and circumferential stresses for un-
restrained ends are then given by Eqs. (29) and (30). The axial
stress is

aTEI 2vE C Ei (R/ir)
a "- ,, il + (42)°Zji -zv (l+v)(1-2v) n

-In

Jul

The thermal stresses as developed here are used in the
URLIM program to evaluate the thermal stress failure levels of

3
- 32 - I
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radomes. An obvious further assumption is that the region of
critical stress in the radome behaves like the cylinder modeled
here. Studies by others (Ref. 11) have shown that if the point
of interest on the radome is sufficiently far from the nose re-
gion, then the cylindrical assumption is sufficiently accurate
(i.e., less than 10% error). It is worth noting that the radial
dimensions that comrare between the cylinder and the radome should
be made along the local normal to the rademe profile and not along
the radius of revolution of the radome profile.

BORESIGHT ERRORS

The prediction of boresight error rates for radar transmis-
sion through streamlined radomes is regrettably imprerise. This
situation is due in large part to the number of significant varia-
bles involved, such as radar frequency, antenna design, antenna
placement within the radome and incidence angle variations, ra-
dome shape, the magnitude and temperature dependence of the radome
dielectri,- constant, and the transmission loss of the material.
"Theoretical prediction techniques that are sufficiently general
and complete are consequently quite complicated. To add to the
confusion, the prediction techniques often do not correlate well
with observed data (c.f. Section 8 of Ref. 12). Therefore, the
philosophy of the radome error prediction method used here is
based on experimental radome data. Interpolation of the avail-
able data is made to determine the empirical equation that de-
scribes the effects of antenna aperture size, dielectric constant,
wall thicknesE, and wavelength changes on a theoretically perfect
room-temperaturt radome design. An attempt is also made to in-
clude the effects of missile dynamics on error slope requirements
by averaging the experimental radome error over a fixed 20 gim-
bal period. Before a discussion of the boresight error analysis
is given, a brief account of tlhe radar power loss due to trans-
mission through a radome will be given.

Transmission Losses

A radome must pass electromagnetic radiation efficiently.
A reduction of radome transmission efficiency degrades the overall
range product or effective noise figure of an airborne radar.
Definition of a radome limit from transmission loss requires

Ref. 11. R. M. Rivello, "Comparisons of Radome Stress Solu-
tions," APL/JHU EM-3989, August 1965.

Ref. 12. L. B. Weckesser et al., "Environmental Limitations
of Alumina, Fused Silica, and Pyroceram 9606 Radomes," APL/JHU
TG 865, May 1967.
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knowledge of target size and missile-target space geometries.
The limitation of a radome from a transmission loss analysis is
very vague since transmission losses simply reduce acquisition 1
range. It is conceivable that very large transmission losses
(2 to 3 dB) could be tolerated during a homing mission and not
degrade target intercept. An increase in radome transmission
losses is caused by three phenomena:

1. A change in electrical thickness that produces a reflec-
tion loss,

2. An increase in the loss tangent of the radome material
that produces an absorption loss, and

3. Distortion of the antenna aperture illumination that
changes the antenna gain (this change may produce a gain
rather than a loss).

Laboratory experiments at room temperature on a Pyroceram
C-band radome verified that reflection losses were less than I ud I
over a 10% frequeacy bandwidth. The ratios of the square roots of
the dielectric constants of Pyroceram to alumina and to fused
silica are 0.76 and 1.31, respectively. Using these ratios, l-dB
loss bandwidths for alumina and fused silica are estimated to be
7.6% and 13%, respectively. Thus, reflection losses are less than
1 dB for relative radome design changes of less than 3.8%, 5%, and
6.5% for alumina, Pyroceram, and fused silica, respectively. Also, I
it has been found that absorption loss (in dB) of a half-wave ra-
dome (normal incidence) for loss tangents (tan 6) of less than 0.5
can be approximated by 13.65 tan 6. This expression indicates that 1
tan 6 can be as high as 0.05 before 0.7 dB of absorption loss is
realized. Therefore, in this study we may safely assume that ra-
dome transmission losses will have little influence on the electri-
cal limitations.

Angular Error Prediction Method

An analytical method was developed for prtdicting the ra-
dome angular error slope (e) during flight. This method is based
on well-known mathematical relations and experimentally determined
conetants. The experimental and mathematical characteristics as-
sumed for the radome model are listed below:

1. The radome has a von Karman shape with a length-to-
diameter ratio of 2.1.

-
I
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2. The antenna is an ll-in.-diameter, four-quadrant array
with an effective phase-center separation of 3.89 in.

3. The RF bandwidth is zero; i.e., single-frequency opera-
tion.

4. The radome has been corrected to have zero error slope
at room temperature.

5. The basic thickness of the corrected radome in wave-
lengths is

whr 0 (247c ý 2 0)..l ,(43)

dA 0

where

0 - tan 1 -Co Brewster's Angle,

and

Ido is the room temperature radome wall thickness,

X0 is the center design, free-space wavelength ofI incident radar, and

co is the room temperature dielectric constant.

1 6. The worst-case average error slope occurs in the gimbal
region through che radomQ nose and is linear between
±10*. This average error slope is derived from experi-
mental data by averaging the worst-case angular error
over ±10"; i.e.,

max aA

200

7. The worst-case angular error slopes are associated with
polatizations parallel to the plane of rotation; i.e.,
the E-plane.

-35 -
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8. Radome transmission losses resulting in lower receiver
sensitivity do not degrade missile homing performance.

9. A change in electrical thickness is directly related
to a change in angular error slope; i.e., 3

Ae 1 -. C
e0  01 

Iwhere I

(4, is the electrical thickness of the radome; I
Sis the radar incidence angle).

Laboratory measurements at C, X, and K bands have indicated

that angular error magnitudes are approximately inversely propor-
tional to the antenna diameter in wavelengths or to interferome-
ter gain. Also, other laboratory investigations with a low-di-I
electric-constant radome sandwich design have been made (Ref. 13)
and the results indicate that angular errors are generally lower
over a broadened frequency band for materials of lower dielectric
constant. In particular, data obtained on a C-band Pyroceram I
radome and a two-ply sandwich wall radome indicated that the iT.-
provement in frequency bandwidth is approximately proportiona4 . to
the ratio of the square roots of the dielectric constants of the !
two radome designs. A mathematical expression describing these
results is

Ae ,(Dielectric Constant Function) A

e0 (Interferometer Gain) 0 '

I

Ref. 13. R. H. Hallendorff, "Wideband Radome Antenna Re-
search," Section 3/9, "Research and Development Quarterly Report,"
APL/JHU U-RQR/64-3, July-September 1964.
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which can be written as

oe A (44a)e 0 4T D •0'

0 2

or

BA0

tDe D (44b)
2X 0

where D is the antenna diameter and B - Aeo/4v. The co term in
the numerator of Eq. (44a) is included for converging the error
magnitude to zero for the case of a radome material having a rela-
tive dielectric constant of 1. The constant B in Eq. (44b) was

3 determined empirically from error slope data taken at C-, X-, and
3 K-band frequencies on Pyroceram radomes. Experimental average

angular error slopes occurring through the radome nose were de-
termined as a function of frequency and plotted as a function of
percent change in frequency (Af/fo). The center frequency (fo)
is defined as the frequency where the error slope through the nose

equals zero.

Figures 4, 5, and 6 show the typical change in experimental
average err-r slope through the nose as a function of percent
change in frequency for a constant-wall half-wave radome. The
K-band data of error slope versus frequency change shown in Fig. 5
are estimated from boresight error neasurements that were made on
a full-wave (two half-wave thicknesse) and a third-order (three
half-wave thicknesses) radome using a pair of standard-gpin horns

with a gain approximately 10 dB down from that expected from an
ll-in.-diameter antenna. Also shown in these figures are straight
line approximations to the experimental data. The slopes of the
experimental functions generated in Figs. 4 and 5 are shown to be
equal to:

Islopel 1--e or - *0 B' (45)

2X 0
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Fig. 4 C-Band Boresight Error Slope versus Percent Frequency Change
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I I 7 TI
Von Karman, Pyroceram 9606
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Fig. 5 X-and K-Band Boresight Error Slope versus Percent rrequency
Change
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The numerical expression derived from experimental data for use
in the radome analysis is

Sd1.615 X eg/deg , (46)
0 a 0

where a - D/2. An increase in error slope (Ae) can be determined
from Eq. (46) for a given change in electrical thickness (A*/IO)
once the frequency (wavelength), relative dielectric constant, and
effective phase center separation (a) are known.

What remains now is to calculate A*/*0 for the radome wall
as a function of trajectory time. To do this the wall is assumed
to be divided into m subsections through the thickness. Any
single section (n) is considered to have its own value of electri-
cal thickness (n):

27rd d - sin 2 (47)
n sn~i

and the average electrical thickness of the whole wall is:

I
avg m n-' (48)

n1l

The relative electrical thickness change is then

V' -*A. avg 0 . avg 1

*0 0 *0

ns 2 -

n1l 0
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In the URLIM program the electrical thickness change
(Eq. (49)) is calculated using the same wall thickness divisions I
used for the thermal stress analysis in subroutine SIGMET. The
result is made available to routine MOBSER where Eq. (46) is
solved for the boresight error. I

AERODYNAMIC LOAD 1

During the flight of a missile, considerable aerodynamic
pressure and skin friction can develop on the radome because of
its high speed and angle of attack. Also, during maneuvering to !
the target, high lateral and angular accelerations can be devel-
oped, causing inertial forces in the radome structure. Calculat-
ing the magnitude of theae forces ana the resultant stresses is I
important in radome design in order to determine the limitations
of the radome and hence the missile. The calculation procedure
is designed to be applied at all times during the flight of the
"'ldsile. Moreover, if the calculations are done over a variety I
of trajectories that cover the missile's propulsion capabilities,
then the mechanical load limits for the radomv. can be accurately
stated.

The present analys;is of mechanical loads on a radome con-
siders forces caused by axial and normal pressure drag, axial
friction drag, normal (or lateral) and axial accelerations, and
angular accelerations. Figure 7 is a schematic of a radome with
the various forces listed that can act at any time during a flight.
FNr and FAr are the normal and axial aerodynamic forces acting on
the radome and are shown acting at the radome's center of pres-
sure (cp). The inertial forces are shown acting at the center of
mass of the radome, mr. The sum of these fo7:es can be resolved
into forces and moments acting at the baze of the radome (point 0,
Fig. 7). These forces in turn cause stresses in the walls of the
radome that can be calculated from knowledge of the radome's base
radius (RB) and wall thickness (t).

Figure 7 is a schematic of a rado~e luring flight with three
coordinate systems. Coordinate system X ,Y is inertial and fixed
to the earth; system X,Y is centered at the center of mass of the
missile and is aligned at any instant with the flight path (i.e.,
X is along the velocity vector and Y is perpendicular to it).
Lateral maneuvers are considered te be along the Y-axis. The
third coordinate system (x,y) is 3icated at the radome's base and
is fixed to the missile body; i.e., it is aligned with the missile
axes, x along the centerline and y perpendicular to the centerline
at 0. All directions shown in Fig. 7 are positive.

4
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X',Y'- Coordinate system attached to ground
X,Y - Coordinate system along and perpendicular

to velocity vector of missile at center of mass of
missile 2

x,y - Missile body coordinate system located at base mr R-.)

of radome ("0")

MrR~ed*f)

,, X, / r Mr

I

Fig. 7 Coordinate System and Forces for Radome Mechanical Load Analysis

I
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During the flight, the aerodynamic pressure and friction
forces act on the radome with a magnitude and direction that is
dependent on speed (Mach number) and angle of attack (a). For
various shapes, these forces are tabulated in coefficient form
and are divided into axial (x-direction) and normal (y-direction)
components, as

C Nr a - FFNr (50a)
(y0p0Mo2 /2)A

and FAr
CAr (Y0 opM 2 /2)A 2 (50b)

where CAr and CNr are the force coefficients for the radome in the
axial and normal directions; Y0p0 M0

2 /2 is the dynamic pressure of
the stream with static condition of pressure P0, velocity (Mach
number) M0, and specific heat ratio yo; and A is the area of the
base of the radome. These component pressure forces are said to
act at the center of pressure (cp) where their effect on the ra-
dome is resolved into the component forces with no moment. The
location of this point itself depends on Mach number and angle of
attack and may be popitioned away from the body centerline. As
shown in Fig. 7, the location of the center of pressure is defined
by xc and ycp. Reference 14 is an excellent source for these co-
efficcents for several nosecap shapes. For the present analysis,
the center of pressure is assumed to vary only along the x-axis
and to have no displacement from the centerline (i.e., Ycp . 0).

During an engagement, the missile's control system will re-
quire rapid changes in the flight path direction. To accomplish
this, the missile will change its angle of attack to provide suf-
ficient lift for the maneuver. The present analysis considers
only lateral accelerations caused by angle of attack changes in
the X,Y plane. At some angle of attack during a maneuver, the
rate of change of angle of attack may be quite large. Dynamic
simulations of various missile configurations are available to sup-
ply these values. The causes of inertial forces that can be con- 1
sidered to be acting at the center of mass of the radome are

Ref. 14. E. T. Marley and H. Ginsberg, "Supersonic Pressure
Distribution and Axial Force Characteristics of Axisymmetric Noses
at Angle of Attack," Paper Presented at the Seventh U.S. Navy 'ym-
posium on Aeroballistics, 7-9 June 1965.
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Lateral acceleration: mri,

Axial acceleration: mrX,

Angular velocity: mrR ( -2,

Angular acceleration: mrR (a + 0), and

Radome mass: mrg.

These forces are shown in Fig. 1 acting in positive directions.

The resultant forces at the base of the radome and moment
about point 0 are found to be

F W FAr + mr I gsin (a + e) + X cos a( * 2
sinc a- -R a(+- , (51a)

Fy a -F Nr + mr 1g cos (a + () - sin a

+ Y cos a + R ( + , (51b)I
M0 W -FNr Xcp + rmr Ig cog (a + 6) sin a

(°.r ,

+i Cos a+a (-ý c+ e) 0 (510)

These stresses caused by the forces are distributed around
the base of the radome and are maximum either at the top (y=RB) or
at the bottom (y--RB) or the radome's base. These stresses are

SyoRB x and (52a)
y R (RB) t 2w(RB)t

IM _0 F x

dy-_RB 0 RB2 2 (.B) t ,(52b)
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The angle of the missile's velocity vector with the local
horizongal (0) is often called the quadrant elevation. It is de-
termined from the trajectory information input by the user, namely
the altitude and velocity as functions of time. In the brief deri-
vations that follow it will be assumed that the altitude and ve-
locity are known at two points along the trajectory; i.e., Zl and
V1 are known at tI, and Z2 and V2 at t 2 . Further, it is assumed
that the vertical acceleration of the missile (Z) is constant dur-
ing the time interval t2 - tI and that the quadrant elevation does
not change (i.e., 01 e 02 8). If 2 is constant, then

z=c1 , I
i- Clt c 2 ,

and

z (C /2)t2 + C2 t + C I

At the two times tI and t 2 , four relationships may be written:

Z1 W V1 sin 0 - C1 t1 + C2 , (53a)

"2 2a V2 sin 0 - C1 t2 + C2 , (53b) 3
Z2 - (C1 /2)t 2

2 + C2 t2 + C3 , and (53c) 0

z I (C1 /2)t 1
2 + C2t 1 + C3 • (53d)

Equation (53a) may be rewritten as I
C2 a VI sin O - CItI , (53ai) I

and substitution into Eq. (53b) gives I

V2 sin e - C1t2 + VI sin e C t (53bi)
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If we assume tI 0, so that t 2 will now represent the time inter-

val between points I and 2 then Eq. (53d) becomes

C3  Z , (53d1)

Eq. (53b1) becomes

V2 sin 6 - C1 t 2 + V1 sinG , (53b2)

and Eq. (53c) becomes

z C1  2 
(31

Z2 - + (V sin 6)t 2 + Z (53c)

Equation (53b2) may be rewritten as:

Cl - (V2 - Vl )(sin W)/t 2  . (53b3)

Substitution of Eq. (5303) into Eq. (53ci) gives

e- sin 1 2(Z2 - 1) (54)
S2 si (V2 + V1 )

The solutions to Eqs. (51a), (51b), (51c), (52a), and (52b)

are obtained by the use of Eq. (54) in the AERLOAD subroutine and

provide attachment stresses as a function of trajectory time in
the URLIM program.

I
I
I
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2. NUMERICAL METHODS

TRANSIENT HEAT CONDUCTION

Consider a body divided into N mass lumps (nodes) as
shown below:

3 In general, any node n may be connected thermally to any number
of other nodes. To determine the temperature of any node (T' )
due to Fourier conduction within the material at some time in-
terval away from an initial starting time, the following equationI
is solved for T'n:

PV ncP ( T' n -T n n " ( T (55)
W 0 -1 n

I where

P is the density of the material,

SV is the volume of the node,
n

I - 49-
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c p is the specific heat of the material,

t is time (t being tc current time and t' being the
time in the future),

k is the thermal conductivity between n and each I
n-i connecting node i,

A is the area perpendicular to heat flow between n
n-i and each connecting node i,

Ln-i is the distance between n and the connecting
nodes i, perpendicular to A,

T is temperature (T' being at t', T being at t), and

K is the total number of directly connecting nodes.

The left-hand side of Eq. (55) represents the chagge in internal
energy of the node n during the time interval t - t. The
right-hand term of Eq. (55) is the net heat transferred to or
from the node by all the nodes it is in contact with. Equa-
tion (55) is, moreover, the finite difference approximation to I
Eq. (4a) derived earlier in this volume (Chapter 4 of Ref. 15
also contains this derivation). The right-hand side of Eq. (55)
can have additional terms which include other modes of heat trans-
fer between nodes as well as the application of boundary condi- I
tions for external surface nodes. The equations listed below de-
fine how these additional modes of heat transfer are calculated
within the program.

Rad:Lation Term

R

4R (I Fn-i Ani £ni (Tn4 - Ti 4 )

where I

a is the Stefan-Boltzman constant,

Fn.i is the view factor from n to i, I

Ref. 15. G. H. Dusinberre, Heat-Transfer C alculationsby
Finite Differences, International Textbook Co., Scranton, PA,
1961.
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£n1i is the infrared emissivity factor from n to i, and

R is the total number of nodes radiating with node n.

Constsnt Flux Terms

q q n-l An-l

Jul

where:
n-i is The independently specified ilux between n and

the independent source i per unit area, and

/Q" is the r'xmber )f independent sources.

Convective Flux

I Convective (aerodynamic) heating is a boundary condition
that is solved for implicity by the SAERO subroutine and therefore
does not enter into the nodal temperature solution being described
here. Convective flux boundary conditions can be specified by the
user on as many surfaces of the thermal model as are desired.

Internal Generation

i# - f(t)

where

q is the heat generated within node n due to indepen-
n dent phenomena (e.g., nuclear fission, Joule heating,

chemical reaction, Peltier effect, etc.), which may
I be time dependent.

Solution Technique

I The transient solution for N nodal temperatures requires

choosing a time step (tI - t) and solving the N equations of the
form of Eq. (55) for all values of T'n. The N temperatures are
stored in the subscripted variable T (dimensioned from 1 to N);
each right-hand side of Eq. (55) is combined into the subscripted

5
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variable Q (dimensioned from 1 to N), and each PVncp is stored

in the subscripted variable U (dimensioned from 1 to N). The I
N equations are then reduced to:

T' -T-�QC) (t' - t) , (56)

where the bar indicates a vector of dimension N. I
For completeness, and to appreciate the nonlinearity of

Eq. (55) or (56), it is noted that the coefficients in these equa-
tions are dependent on the temperature of the node; i.e., k, e,
and cp are treated as functions of temperature. If k - f(T) in
general, then for Eq. (55): I

a k (= f 2IT ' (57)

and if c - g(T) in general, then I

- g (- 9). 2 ) 

I
The special case of two nnIds of differing materials (hence dif-
ferent k functions) cennected together through a contact re-
sistance is handled by tht COMCON subroutine, which evaluates the
following equation:

C

Kcc K cc (Tn -Ti) (59)

where !
1 1 (59a)

Kcc (k A) n-x iA/L) x-i

I
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Subscript x denotes the location of the interface between
nodes n and i, and

k flI( n +TX

kn 2X)

k 2 f 2 (Tx), the thermal conductance of the contact, and

ki f(3 x2 T).

Implied in Eq. (59) is a solution for Tx that is carried
out by subroutine COMCON and is based on the fact that the inter-
face has no thermal capacity (therefore all the heat conducted to
one side of the contact is completely conducted out at the other
side).

The transient solution is obtained by choosing a time step
(t' t) and solving all N equations of the form of Eq. (56)
for T . One must be careful in choosing the time step so that the
solution will be numerically stable. The rule for choosing a time
step is )Ia 09MI (60)I E H n-Jl

where Hn-i is the net conductance between nodes n and i and
can be composed of conduction and/or radiation terms:!

k A
n-i n-i

m - ~FA) T+ T +Tiu n-.n-i

I MIN( ) represents a choice of the minimum value of all N such
values. (The N values of EHn.i are stored in the vector H
within the computer program.) Equation (60) can be viewed as aI5

I - 53 -
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statement of the second law of thermodynamics; that is, for the
node in the network with the combination of smallest thermal
capacity (Cn) and the largest total thermal conductance (MHn-i), I
the amount of heat that would flow out of the node during At if
all surrounding nodes were at 0*R would not cause the tempera-
ture of that node to be less than OR. Algebraically, the rela--I
tionship can be seen by letting Ti and T n approach 0 in Eq. (55).
In Eq. (60) we have arbitrarily taken 90% of this minimum to en-
sure stability. I

In the computer progran, the 3TEP routine computes At and
the nodal temperatures via Eqs. (60) and (56), respectively. i
Orthogonal Geometries

The fundamental heat conduction equation was described in
Section 1 of this report. In those discus.ions, the spatial coor-
dinate system used in the partial differential equations was re-
quired to be orthogonal. When the partial differential equations
are approximated by difference equations (e.g., Eq. (55)) proper I
care should be exercised to see that the nodal network (i.e., the
"geometry) is orthogonal. In Eq. (55), orthogonality is incorpo-
rated in the two terms An.i and Ln.i, where A is a "contact"
area between adjacent nodes, and L is the distance perpendicu-
lar to A between node centers. In coordinate systems with
natural curvature (cylindrical and spherical, for example) the
simple A/L approximation is not correct because the effects of
curvature are ignored. In the following derivatives, the partial
differential equations will be writteu and the characteristic solu-
tions for steady state will be obtained for two adjacent nodes. I
The appropriate correction terms will then be identified.

Cylindrical Nodes I
Considering heat conducted in the radial direction only in

the steady state, the Fourier heat equation (c.f. Eq. (2)) is
written as

•2T + 1 xT .0

a 2 r 3r
rI

If p - dT/dr, then by substitution and allowing the partial deriva-
tives to be total derivatives, I

dp/dr + p/r 0.

-54- 1
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Further, if p is of the form p - dT/dr - C/r, then

T(r) - C in r + D ,

where C and D are constants to be determined by the boundary
conditions depicted in the following sketch:

Ir

In the sketch the nodal interface Js at r, the inner node center
is at ri with temperature Ti, and the outer node center io at ro
with temperature To. Using these two conditions in the above
equation for T(r) w!ll yield:

(TO - Ti)

T(r) - T +- (To/rT (in r - ln r )
0 n(r /r i) 0

The heat conducted through the nodal contact is given by

4(r) - -A(r) k VT
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where V is the gradient operator (c.f. Eq. (6)• and reduces to, I
dT/dr in this unidirectional case. A(r), the `unction relating
cross-sectional area to radius, for the nodes shown is

A(r) -(61 - 62 )rz , I

where z is the depth or axial dimension, and 61 and 02 are the
angular locations of the node centers. When the above relation-
ships for A(r) and T(r) are substituted in the equation for q(r) I
the following equation results:

-z (6 82) k(T°

q(r) - in (ro/r i)

Comparing this equation with Eq. (55) will reveal that if 3

in-i

then proper consideration for the cylindrical curvature will have I
been made. The curvature effect derives from the cross-sectional
area having a dependence on the coordinate perpendicular to the
area. In cases where the area is invariant in the direction of I
heat flow (rectilinear coordinates, for example) no "correction"
term will be required.

For conduction in the circumferential direction in a cy-
linder (i.e., in the 6 direction), the following partial differ-
ential equ-ion is written: I

1L a 2 (623 " 2 - o
r a2

which simplifies to I

dT/d - C,

5
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or

T(6) - Ce +D

where C and D are again constants of integration determined
by the boundary conditions sketched in the following figure:

I/

I ;-

I The heat conducted circumferentially between the nodes in the
sketch is given by

4(6) - A(6) k 1 ITi r a0

with

A() z (r - r )

hence 
(r - r ) z [T(62 -T(8l1 k

j)(02) -r 1)(

S- 57-
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where r is the average radius, or the radius of the node centers;
i.e.,

r (r + ri)/ 2

In this case the term (ro - ri)z is the cross-sectional
area and r(0 2 - 01) is the path length between node centers and
there is no correction term. This is as expected because there
is no variance of the area normal to the circumferential direction.
By a similar argument, the axial cylindrical direction will have
no correction term associ.,.ted with it. I
Spherical Nodes

In spherical geometries the coordinate system consists of 5
(a) the co-latitudinal angle (ý) measured from the pole of the
sphere with positive radial values (i.e., the "North" pole);
(2) the longitudinal angle (e) measured as projections in the
equatorial plane; and (c) the radial distance (r) measured from
the center of the sphere. In the nodal sketches that follow,
these directions will be illustrated for clarity. I

Considering only conduction in the co-latitudinal direction
at steady state, the Fourier equation is 5

d2T/d*2 + ctn dT/duo . I

If we let dT/df - p C cuc f, then

dp/d# + ctn f p w 0, (61) I
by substitution. Also,

* , I
dp/df a -C csc # ctn ,

so that by substitution in Eq. (!), I,

-csc * ctn * + ctn * csc - 0,

5o- 58 -
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which is an identity and verifies the choice of p - C csc *.
Hence,

dT/dO - C csc 0

and

T(W) - C in (tan 0/2) + D

where C and D are integration constants determined by the
boundary conditions described next. The sketch below shows two
spherical nodes emphasizing the co-latitudinal coordinate (0):

I 
'

t I
0~1

• . 0 2

I In the following, T, a T(0 1 ), T2 - T(0 2 ), and the node centers are
located at (01, r, 8) and (02, r, e), where 0 is the averageI

1- 
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meridional coordinate ((61 + 82)/2). The area normal to the
direztion is given by

2 2
sin (r - ri) (2 01)A(O)-2

where ro is the radius of the outer surface of the nodes and ri is
the radius at the inner surface of the nodes; hence ro - ri is 1
the radial thickness of the nodes. Using only the * direction
terms for the spherical gradient operator (c.f. Eq. (7)), 1 I

S=-A(*) k (1/r) dT/dO.

The previous relationship for T(0) combined with the boundary con-
ditions will give I;

d sin (T2 - Tl)

d0- (cos 2 -cos ol) 'i

Combining the A(O) and dT/do relationships will yield

-(ro ri) (6 - e ) k (T2 -T1 ) T

(n tan (02/ /2)1
intan (0 /2)J

giving an effective A/L in the * direction of I

Al (r0  r ri)(02 0)e
L i tan (02/2)]

tan (0 1/2)J3

When considering only heat conducted in the radial direc-
tion, the divergence of the temperature field (T) for spherical I"
geometries can be reduced to

-60-
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2 2d T/dr + (2/r) dT/dr - 0

To find T(r), let p - dT/dr, so that

dp/dr + 2p/r = 0

Further, if p - C/r 2, then by substitution in the previous equa-
tion

-2Cr 3 + (2/r) (C/r 2) 0 0

which is an identity, verifying the choice p - C/r 2 - dT/dr. One
integration of this relationship gives

T(r) - (-Clr) + D

where C and D are constants determined by the boundary condi-
tions imposed as illustrated in the following sketch:

z

SA(r)

0i

Y
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In the sketch, two spherical nodes are in contact at radius r
and have node centers at ro and ri. The temperature (which de-
pends only on the dimension r) is To at ro and Ti at ri. Sub-
stituting these values as boundary conditions gives

C = T2 - T1  j
ar r 2  I

and

dT T2 -T1 I
r rI( r2

The area normal to the radius direction is given by:

A ( r ) - r 2  ( c o s fi - o s f2 ) ( 02 - e1 ) . I

The heat conducted across the area at radius r is then I
4(r) -- A(r) dT/dr

(Cos - cos f2 ( -2 ) k (T2 - T1) I
r 1  2r I

By inspection with the rectangular case, the effective A/L for
this condition is:I

Al (cos f1- Cos f2) (e2 - ei) I
r r1  r 2  I

When the only dependence of temperature is in the longitu-
dinal direction (6) then the divergence operator on T yields 5

- 62 -
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2

ae2

which reduces to

d2T/de2 . 0

and is identical to the rectangular case. Moreover, it is apparent
that the area perpendicular to the e coordinate does not vary with
e as can be seen in the attendant sketch:

z

I ~--02(G

Iy

IZ

Y

I
From the simple form of the divergence of T (stated above), by
inspection

T2 - T

dT/dO - 2 1

62 1
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with T1 being the nodal tewperature at 61,and T, being the nodal
temperature at 62. The coatact area between the nodes is at e;
the area perpendicular to the 6 coordinate is:

(- 2 - •i) (r 2 r 2 ) 
I

2

and the heat conducted through this area is then

k dT

q(e) - -A(6) si, d

r 2 1- i) (r0 - r1) 1
~sin (1 + 2) (82 - 81 jkT2  1y

The term in brackets is seen as the actual A/L for the meridional I
direction if r - (ro + ri)/2, * a (01 + 02)/2, A is given by
A(6) above, and L is the arc length (r sin 0) (02 - 01). 1

In summary, by taking proper consideration for curvature
in cylindrical and spherical coordinate systems, effective A/L
formulas have been derived that should be used in the finite dif-
ference equations for heat conduction. The terms derived reduce I
to the correct partial differential equations in the limit of in-
finitely small differences. I

STEADY-STATE TEMPERATURE FIELDS

Iterative Solution

In the steady state there is no change of temperature fromone time to the next eo that T a T' in Eq. (56) and we have no I
net flow of heat at any given node; i.e.,

Q 0, (62)

which states that the net heat flow for each node must be zero. 1
Solving the steady-state problem then involves finding the set of
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temperatures (T) so that Eq. (62) is satisfied. Since all of the

individual terms that comprise Eq. (62) are temperature dependent

(c.f. Eqs. (57) through (59)), then Q is a function of T; i.e.,

Q - F(T) . (63)

Newton's method for finding the zeros of a function can be
used to solve this system of ejuations in the following way: If
an initial guess for T, say To, is substituted in Eq. (63), then

Q0 0 F(T 0 ) # 0 . (64)

A set of correction terms (TO) will exist so that TO - T and

F(T) 0,

or

F(T•0 -•• 0  o. (65)

I
Equation (65) is expanded in a Taylor's series as

F(T 6 F(T 6 F 0 602 F ft(TO)(6rI•o- o)"cV)- 0oF(To) + 0 .. . (
0 -0 0 0( 0)+ 21 - - " - 0, (6

where the primes indicate derivatives with respect to temperature.

It is assumed that the initial guess (To) is sufficiently
accurate so that the corrections (ý0) are small. Further, the
second and all higher derivative terms are assumed small compared

with the first derivative term. With this assumption Eq. (66) is
solved for 6o:

! TO F (T0)
Ssi (67)
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Because of the approximations, Eq. (67) can be written as

F (TO) (68-5 , (68)
1 F' (T'O) I

and moreover, I

To- 0 - T , °(69)

where 61 is an approximation to the true correction terms ( 60),
and T1 is an approximation to the true steady-state terperatures
T. Combining Eqs. (68) and (69) yields:

T, T- 0 F(T0)/F'(T0)]

-To- 0 o 'o (70)

An iterative process can be devised wherein each set of 3
temperatures T1 are substituted back into Eq. (62), new values for
F(Tl) and F (Tl) are used in Eq. (70) to find a further improved

set of temperatures (T 2 ). The process is repeated in this manner

until the corrections (6,) approach zero and thesteady-state heat
flows (Q) equal zero. Error tolerances for the 61 values on theorder of -lR nave been used successfully in practice; the precise
value is selectable when the program is executed.

To accomplish the steady-state solution in this manner, it I
is required to have an initial guess CTo) and to evaluate the N
correction factors (Qo/Q'o). The heating rate for each node (Q)
is calculated as discussed above for the transient solution and
the derivatives (Q') are calculated as follows:

6
I
I
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Conduction

rK3qc ap (T T
ai T Li T)n 3ln L n-i

K K mk

= + (TN Ti) (Ti L i i L n-i n

Radiation

a- n-iR
RF A 

-T'IT4
iTZ) -i ]- -

F n-i An-i En-i 4Tn3

R

+ 1  FAi(T n4-T n-i (72)

External Fluxes and Internal Heat Generation

=0 and 3q 0 (73)
3T aTn n

by definition.

!
I
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Composite Conduction

C!
ac Kc (n i) C aKC

AT i- - (T CTC) + 1: K (74)
n n i ni n cc

It can be seen from Eq. (57) that

akn- f (Tn + T)/2
I L- 1. (75)
3T 2

n

and similarly, from Eq. (58),

arn-i f2 (Tn + Ti)/2
_TT_ 2 (76)

n

With Eqs. (59a), (75), and (76) substituted into Eqs. (71) i
through (74), the iterative process implied by Eq. (70) may be
carried out to arrive at the steady-state temperature distribution. 3

Usage experience with this iterative solution technique has
been varied. In general the following cautions are offered
(1) The number of iterations required for solution depends strongly I
on the initial guess for the temperature field (To); (2) the
larger the number of nodes, the more iterations will be required
and the smaller the probability of satisfactory convergence; and 3
(3) a constant relaxation factor (described below) may improve con-
vergence speed and solution accuracy.

Relaxation Factor I
A provision has been added that allows Eq. (70) to be

written as I

T 1  0  R(Q 0 Q0 (77)61
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where R is a constant relaxation factor. Simply stated, values
of R greater than 1 tend to accelerate the convergence to
solutionc that otherwise require many iterations and values of R
less than 1 tend to damp succet alve solutions to problems thatI tend to oscillate. Oscillation cau be characterized by successive
values of 6 being positive and then negative, and not diminishing
in absolute value. The proper choice for R is a subject of ex-
tensive mathematical significance and is generally found by experi-
ence (i.e., trial and error).

The foregoing comments serve to indicate an inherent unde-
sirability in the iterative technique just described - its unpre-
dictable behavior. To avoid this, another scheme is available -
the implicit technique - and is described next.

I Implicit Technique

The right side of Eq. (55) describes heat transferred via
internal conduction, but there also may be radiation transfer, as
well as independently specified external heat fluxes or internal
heat generation. Terms such as these enter Eq. (55) either as
constants or terms that may have some dependence on Tn- The spe-
cific form of these terms is described above for the transient
solutions. It will be sufficient for purposes of description to
examine the internal conduction term as written in Eq. (55) andnote that the other terms mentioned simply add to the coefficients
in the equations that will be developed.

I Note that in the steady state, T'n equals Tn (there is no
change in .temperature with time) and the left side of Eq. (55) is
zero. Equation (55) is expanded to

K K k A

kn-i Ani T- kn n-i n Ti a O (78)
i-l n-i i=L n-i

For every node in the network an equation of the form of Eq. (78)

can be written. For boundary nodes whose temperatures (Tb) are
known, Eq. (78) is not relevant and the following form is used:

I Tb constant. (79)

6
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For a constant flux or internal heat generation boundary condition,
the heat flux is simply added to the left side of Eq. (78) as a I
constant. It should be noted that in the case of convective heat
fluxes a separate subroutine (SAERO) uses an implicit technique to
solve for the surface temperature. Therefore, as far as the nodal
network solutions are concerned, convective surface temperatures
enter as equations such as Eq. (79). It is now clear that for a
network of N node points, N equations of the form of Eq. (78)
can be written. To find all N unknown temperatures requires the
simultaneous solution of this system of equations. Written in
matrix form the system of equations is

Iq. C11 C 12.-3 C C1 t T- 0I
2 C2  C2  C  .3  C23  T 0

31 32 33 2Q 2N 3
3 C3 C 3 C 33 C V T3 0

* .. .*. X . --

o C 1 * C C T 0a

b 0 0 0 0 0 0 0 0 0 1 0 0 0 Tb CInutaot

M CNIC21CH CY, TN L t
I

The above system shows nodenJ 1 through N as regular inter-
nal nodes, a boundary node with value Tb, and node N with an ex-
ternally supplied heat flux (Qext)'

It should be noted that the off-diagonal coefficients are I
symmetric; i.e.,

I
Ci~ C ki Ai " H

i J L ,j 1,j
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and that the diagonal coefficients are

K k A

C k n-i An-i .

nn_ L n-i

The solution technique used to solve these simultaneous
equations is Gaussian elimination with back substitution. In this
technique the equations are algebraically manipulated so that the
coefficient matrix is reduced to upper triangular (i.e., l's oc-
curring along the diagonal with all zeros below the diagonal).
This is accomplished, tor example, by: (1) dividing the first
equation by C13; (2) multiplying the new equation 1 by -C21 and
adding the result to equation 2, thus producing a zero for C21;
(3) dividing the new equation 2 through by the new C22 , Proceed-
ing in this manner through all N equations produces the upper
triangular coefficient matrix, Note that at the end of this pro-
cedure, the last equation (N) will read

Eq. No.

N' V[ C.. .. I, L ii Lvij
I ,

N 0 0 1 TN1 va lue

which says TN - value. This result can then be substituted into
equation number N-1, and TNi can b? solved for. This back sub-
stitution procedure can be followed up through the reduced equa-
tions until all N temperatures are known.

While this technique requires the storage of the N x N co-
efficient matrix, usage has shown that solutions are achieved much
quicker and are generally more accurate than the iterative scheme
described earlier.

It should be mentioned 'hat the implicit technique is also
used iteratively; i.e., successive solutions to the temperature
field are compared and convergence is judged according to the suc-
cessive differences. Since the values in the coefficient matrices
are temperature dependent, successive coefficient matrices will not
in general be identical until the temperatures themselves do not
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change. Generally, the number of iterations required is small I
(less than 10). I
INTERPOLATION TECHNIQUES

In arriving at the transient or steady-state temperature re- 3
sponse of a thermal network the routines in URLIM make extensive
use of numerical interpolation. Because all of the pertinent mate-
rial properties are allowed to have temperature (and sometimes pres-
sure) dependence, these functional relationships must be modeled.
The technique employed here is the most simple and direct; the
functions are represented by tables of independent and dependent
variable values and linear interpolation is most frequently used. I
The table look-up procedure most often employed is a simple serial
search. In general, the tables can be as long as required to ac-
curately define the particular function. Search time will in- I
crease with incresses in tabular length. The following discussion
will outline the techniques used by the URLIM interpolators. The
PIFl, PIFID, and DECIDE routines in particular use the following
scheme. I

Let the independent variable be represented by the vector
of N values X and the dependent variable by the vector of N I
values Y with the functional relationship between the values
expressed as.

Y - f(X) I
Each value in Y, Yi has a corresponding value in X, Xi so that !

-i f (Xi)'

and each pair Xi, Yi is a point on the curve

y - f(x) .

If a value of x is given (xo) and the corresponding value of I
y (yo) is required, then a search is performed through the values
X until two values are found: 3
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iX : x0 < Xi+1

Note that the vector X must contain values in monotonic increas-
Ing ;rder. When the two points that satisfy the inequality above
are found the value Yo is computed as

y0"= ÷Y+ I -i )YoW xi÷ +(i,- % -xl

In the cases where x0 < X1 or x0 > XN (where XN is the last tabu-

lar value in the vector X) linear extrapolation is employed using
the two given end point values.

The routine LINLCG uses a modified version of the same
method described above. In this case, after the two tabular
values Xi and Xi+l are found the corresponding values Yi and Yi+l
are replaced in the calculations by in (Yi) and In (Yi+l), re-
spectively. The returned value yo is then

Y0 a exp IFn Y i nx0 - Xi) ]
Xi+1 Xi

I
This result is then a semilogarithmic linear interpolation. For
values of y that are negative, the sign is retained ane the In
function is performed on the absolute values of X. In the spe-
cial case of the value of either YI or Yi+l lying between +1 and
-1, the logarithmic functions are suspended and simple linear in-
terpolation is performed.

In the BIVLID routine, the functional dependence of a
variable on two independent variables is modeled. In this case
the two independent variables x, and x2 have monotonically increas-

ing values stored in the vectors Xa and Xb with individual values
Xai - Xa and Xbj Xb. The dependent variable y is defined as

y - f(xa,xb) and is represented in the two-dimensional array Y.
The subscripts i and j are used to index the array Y (e.g.,
Yi,j = f(XaXb)). The subscript I is used to index the vector

Xa and the first index position of the array Y; similarly, the
subscript j _is used to index the vector Xb and the second index
position of Y.
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When values of xa and xb are given, BIVLID scans the vec-
tors Xa and Xb, respectively, until the following conditions are
satisfied:

(1) Xai z Xa < Xai+l

(2)Xb c xb < xb +l •

The above conditions define i and j uniquely. In the case I
where xa < XaI, i is set to 1. Also when xa > Xan where n

is the extent of the vector Xa, then i is set to n. Exac2tly
analogous conditions hold for the vectoi Yb and J.

With the values i and j established, two intermediate
values of the dependent variable are found:

"fyiJ +(Y ibl b (x2 - Xb,) U

y2 y i+1 +(i+l~i+l il 2- )

The required value of y is then computed as

y(X1 .x yo +(yo) (II - Xai)

The BIVLID routine also returns either of the partial de-
rivatives of the function y depending on the value of a control
code. In the example shown above the derivative would be
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y -- y

IV Y 2 1

ax x -X1 ai+1  ai

Similar expressions to the ones above can be written for cases
where ay/ax 2 are required.

The routine has a facility for returning a value for one
of the independent variables when values for the dependent vari-
able and the other independent variable are supplied. This func-
tion is termed an "inverse" interpolation and is useful in cer-
tain applications. In this process if the value xa is given alongI

with the value Y(Xa,X b), then the value x b is returned. Thevector Xa is searched until

j ai !xa <Xai+ 1

thereby establishing the value of i and two vectors of dependent
values, namely Yf * and Yi+I*' A series of intermediate depen-
dent variable values are then found between these two vectors;
i.e.,

y'= Yi,J + i+l,J X
\ aY+l1  ) a

and

y y +- ~~~lyijlX
2 \~~i Xa l X a 1 a i)

such that either

(1) Y : y(xl,'X 2 ) < 2

1 or
r (2) Y' 1 y(Xlx 2) >
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When either of these conditions is true, then a value for the in-
dex j will be implicitly known. The returned valie of the de-
pendent variable (x' 2 ) is then given as:

X2 Xb + ( 2) ' ) (Xbj+l - J)
Xb +( Y2- YI Xi

A similar procedure can be outlined whtn the values y(x'l,x 2 )
and x2 are given and x'l is desired.

If the conditions (1) and (2) are not satisfied after all
values of j are used, then the dependent variable value that
was given lies beyond the tabulated values. In such cases, the I
routine will generate an appropriate warning message and return
the last tabulated value of the required independent variable
(i.e., Xam or Xbn, where m (or n) is the extent of the vector 3
Xa (or Xb)).

In cases where the dependent variable is double valued 3
(i.e., there is more than a single value of J that satisfies
the conditions of (1) or (2) above), then the smallest such value
of j will be used.

When the data being used for interpolation have an inher-
ent logarithmic dependence, a linear-logarithmic interpolation
may be obtained in much the same way as done for the single inde- |
pendent variable data in LINLOG, discussed earlier. For these
cases the BIVLLID routine is used, which has the same basic algo-
rithm as discussed above for BIVLID. The logarithmic aspect is !
accomplished by using the logarithm of the dependent variable
values rather than the values themselves. In other words, where

Sis used in the relations above, ln (Yi.j) is substituted and
the returned values are the antilogs of the resultant values.

INTEGRATION

Within the thermal-stress routines (SIGMA and SIGMET) nu-

merical integrations are required of various tabular functions.
The process is accomplished by the TRAP routine and essentially
evaluates the integral I, which is defined as

I
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I f F(x) dx

a

The function F(x) is assumed represented in tabular form (i.e., a
vector of independent variable values (X1 and a corresponding vec-
tor of dependent variable values (Y - F(X)).

The algorithm divides the interval [a,b] in half and the
three functional values Yl - f(a), Y2 - f[(a+b)/2], and Y3 - f(b)
are found by interpolation. The integral I is now approximated
by the area under the three-point function via the trapezoidal
rule; i.e.,

12 = (yl + y 2 ) (b - a)/4 + (y 2 + y 3) (b - a)/4

The interval [a,b] is now divided into three parts and the values

Yl . f(a),

Y 2 u f(2a + b)/3,

Y 3 - f(2b + a)/3, and

Y4 - f(b)

are determined by interpolation. The integral is approximated
again by the trapezoidal process and is called 13. At this pointI the value E - 1 - 112/131 is compared with a preset tolerance value
of 0.01. If E > 0.01 then the interval is divided into fourths, the
approximation 14 is generated via the trapezoidal rule, and a new
value of E - 1 - 113/141 is compared. This process is continued
until either E : 0.01 or 20 such iterations have occurred. If,
after 20 iterations, E is greater than 0.01 then an appropriatemessage is printed, the ratio 120/119 is printed, and the value
120 is used as the value of the integral.

SIMULTANEOUS AND IMPLICIT EQUATIONS

Within the aerodynamic heating routines, there is a require-
ment for the solution to implicit equations (i.e., equations with
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terms or functions of the unknown variable on both sides of the
equal sign that cannot be solved in closed form). Also, in the
iterative steady-state solution procedure, a number of implicit
equations nust be solved simultaneously. The numerical technique
used in both cases is Newton's method wherein successive correc-
tions are calculated for the value of the unknown quantity based
on partial derivatives. A complete description of this algorithm

is presented in the paragraph entitled "Steady-State Temperature
Fields" (Section 2). 1

The set of simultaneous equations generated in the implicit
steady-state method are solved by Gaussian elimination to achieve
an upper triangular coefficient matrix and the unknowns (tempera-
ture) are solved for by back-substitution. Again, this method is
described in Section 2 and will not be repeated here. I

I

I
I'

'I
I
I
I
I
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3. DATA MANAGEMENT

EXTERNAL STORAGE

In the URLIM and SHTP subroutine library it has been found
useful to have a number of variables that can be accessed freely
among the subroutines. This class of variables is called EXTERNAL
in the PL/I language. Table 2 of Volume 2 of this report lists all
of the EXTERNAL variables used with brief descriptions. Since
EXTERNAL variables must have unique names, the list will serve as
a guide to future changes in the program that may require addi-
tional EXTERNAL variables.

DYNAMIC STORAGE

Many of the arrays of data stored by the URLIM routines
are of flexible extent; i.e., their dimensions are program vari-
ables and are changed as required from run to run. Many examples
are evident in Table 2 (e.g., the nodal temperatures (T) and the
steady-state coefficient matrix (HMAT). As might be expected,
the single most important value that determines the exLent of the
various arrays is the number of thermal nodes (i.e., the value
of variable LASCAP). Subroutine STORE is the routine that allo-
cates the bulk of the required dynamic storage according to the
parameters passed to it. In establishing the storage limits that
will be required, one of the important aspects to manage is the
use by the READCP routine of "node" numbers that are beyond the
value LASCAP. In describing the network data it is possible to
use an extended input technique that will require additional stor-
age (c.f. Appendix F of Vol. 1 of this report). When employing
this method, adequate storage must be allocated by the STORE rou-
tine through the parameter XCAPLIM. Further explanations can be
derived from the discussion of the STORE routine (Appendix H of
Vol. 1 of this report).

The use by the SIGMA, SIGMET, and MOBSER routines of nodal
temperature positions in the vector T must also be allowed for
if the plotting flag is set in the calling sequence to any of these
routines. This feature does not require storage additional to that
set by LASCAP, but it is imperative that the "node" number used for
the thermal stress values not be the number of a node in the network.

Another important data management technique employed within
URLIM is the use of POINTER variables to locate the storage of the
various material property tabl's and the various time-dependent
tables. In the case of the thermal properties, the READkK routine
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stores the memory locations of the property data it reads into
the EXTERNAL POINTER variable PP. The values in PP are then made
available to the routines that require the thermal property tables. I
Indexing with the vector PP is accomplished via the ID values sup-
plied to the READRK routine (i.e., the material thermal property
codes). I

For the time-dependent variables read in by the READTM
routine, the EXTERNAL POINTER array TMPNTR is used to store the
locations of the tabular data. This storage information is then
made available to routines in the URLIM library for processing.
The indexing of TMPNTR, a two-dimentional array, is first by the
ID number used when read by READTM and then by the dependent I
variable position in the calling sequence. To illustrate, con-
sider the following hypothetical call to routine READTM:

CALL READTM (ID#, TM, DEP1, DEP2, DEP3, DEP4, DEP5,
#ENT, INFILE):

where the vector TM is the list of time values and the vectors m
DEP1 through DEP5 are corresponding lists of dependent variable
values. Upon return from this call to READTM the storage loca-
tions of the variable TM and DEP1 through DEP4 will be recorded I
in the values of TMPNTA (ID#, 1 through 5), respectively.

The Initial Storage Area I
One of the "optimizing" features of the PL/I optimizing

compiler is its improved ability to mauage the dynamic alloca-
tion of storage, according to the requirements of the particular I
program. The computer code that supervises the allocation of
storage segments for a particular program is supplied automati-
cally by the optimizer compiler; the only item supplied by the I
user is the specification of the amount of storage that will be
needed for the dynamic storage. This area is termed the initial
storage area (ISA) and has a default value in the present com-
piler implementation of 8000 bytes. For most programs, and cer-
tainly for the URLIM program, this is an insufficient size for
the ISA. Determining the proper ISA size is done with the aid
of the program-generated storage report that gives an accounting 1
of the actual storage requirements and the number of times stor-
age outside of the ISA was required. Figure 8 is a reproduction
of a typical storage report, the salient features of which are I
discussed in the following paragraph.

In Fig. 8 the size specified for the ISA is given in bytes;
the amount of actual PL/I storage needed by the Job is given and I

-
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STOPAGE MANAGEFNT REPORT

Ir~iiSI7E SPErl`TIEo Ili]? kYTFq

LF'\J(,TH OF INITIAL STfrACGF A;4FA (IsA) 1113je) i'fT-;
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I ~Fig. 8 Storage Report from P1/I Optimizing Compiler
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the amount of storage used outside 0. the ISA is given. Further,
in cases where storage outside the ISA is required, the number of
requests to the system (OS) for such storage is indicated. In a I
program with a properly specified ISASIZE, the amount of storage
required outside the ISA will be zero (i.e., the amount of FL/I
storage required and the ISA will be equal). To establish the
correct value of the ISA, an estimate of the proper size is made
and a report is asked for via the PARM field of the EXEC card for
the job. Upon receipt of the report, the correct amount of PL/I
storage required will be known, and subsequent runs should use
this value as the ISASIZE. If program variables that affect the
dynamic storage are changed between runs, the amount of proper
ISA storage may change. For this reason, it is generally good I
practice to have storage reports made with each run and make ad-
justments to the ISASIZE as required.

INTERFACE WITH THE OPERATING SYSTEM

The machine configuration for the URLIM program code and I
the SHTP subroutines is the IBM 360. The PL/I source was compiled
with the optimizer version of the PL/I compiler, All of the rou-
tines used by URLIM or contained in the SHTP library are available I
as load modules. Also, the URLIM main program is available is a
load module. The extent of interaction with the IBM operating
system (OS) is then to properly assemble the required subroutine
modules and execute the program. The discussions that follow will
be applicable to the running of URLIM or to the execution of an--
other application program using the SHTP library, with the follow-
ing difference. For URLIM runs, the main program is already I
written, compiled, and stored in a data set; for a run with SHTP
modules, the main program will be user-supplied and assumed avail-
able as a precompiled load module ready for use.

To further preface the following discussions, a general
description of the IBM 360 system environment will be made. OS
is fundamentally a supervisory program that oversees the illoca-
tion of the 360's basic resources, namely central processor unit
(CPU) time, main storage (region), and peiipheral storage devices.
Interaction with OS is accomplished by writing statements in Job
control language (JCL). These statements serve as preparatory

remarks to OS in that they identify the Job to be run and make
requests for some of the three aforementioned basic resources.
There are three fundamental types of JCL statements: (1) the JOB
card (containing user identification and accounting information)
that serves to identify distinct jobs to OS! (2) EXEC cards that
identify what program is to be run, and (3) data definition (DD)

I
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cards that identify the various files (data-sets) that will be re-
quired by the program. Requests for region (addressable storage)
and CPU time are made on the EXEC card.

At any given 360 installation there will be a set of pro-
grams that are used very frequently by many users. The attendant
JCL (which may be quite lengthy) is often contained in files known
as "1cataloged procedures." These high-usage programs generally
include the IBM-supplied high-level compilers (FLi, Fortran, etc.),
the link-editor program, and others. The JCL described here will
include (1) that which is needed to use the link-editor and
(2) that which is sufficient to run a previously link-edited module.

The Link-Editor

The cataloged procedure OL used at the IBM 360/91 installa-
tion at APL is used to execute the link-editor; OLG is used to
execute the link-editor and then execute the resultant program.
The use of procedure OL is shown in the example below. OL is used
to assemble the required load modules together and save the re-
sultant, fully link-edited program on the file described by the
L.SYSLMOD DD card:

// EXEC OL,'LIB-BBE.FRAZER.BASIC02',
// PARM.L='LIST,MAP,LET'
//L.SYSLMOD DD DSN-xxx.xxx.xxx(yyy),
// DISP-(NEW,CATLG),
// SPACE-(3156,(60,20,2),RLSE),
// UNIT-SAVE
//L.SYSIN DD *

INCLUDE SYSLIB (URLIM)
ENTRY PLISTART/*

The example first names the cataloged data set BBE.FRAZER.
BASICO2 as the SYSLIB file for the link-editor. Next, the file
SYSLMOD is designated to be data set xxx.xxx.xxx(yyy) (i.e.,
member yyy of the partitioned data set xxx.xxx.xxx). Further, the
data set xxx.xxx.xxx is to be saved via cataloging for later use.
The "PARM.L-" specifies operating conditions for the link-editor,
namely, that a storage map is requested (MAP) and will be printed
by the link-editor; that all input to the link-editor will be
listed (LIST); that the link-editor shall continue its operation
even though an error may occur (LET).

j The input file to the link-editor program (//L.SYSIN) con-
tains two instructions to the link-editor: (1) to include the mem-
ber URLIM from the SYSLIB data set and (2) that the entry point
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(first executable statement) of the module is named PLISTART, a
name provided automatically by the PL/I optimizer compiler and
found with the main program. The member URLIM in this example is
the main program and will be looked for by the link editor as a
member of the partitioned data set described by the SYSLIB DD card
in the cataloged procedure OL. All subroutines called by the 1
URLIM program and all subroutines subsequently called are assumed
to be members of either the data set BBE.FRAZER.BASICO2, or of
the system libraries named automatically within the cataloged pro- I
cedure OL. The link-editor's output (the complete executable pro-
gram) is written on the file SYSLMOD and the job is finished. The
SYSLMOD definitions indicate to the system that the file is to be
saved and cata2.ged for later use.

The interested reader will find further descriptions of the
link-editor program and descriptions of other ways of assembling i
a complete executable program in Refs. 16 and 17. These other

methods include overlay defining to maximize storage use and ex-
cluding routines that are referred to but never actually called.

The procedure OLG is used in the same way as procedure OL
except that the completely executable program (stored on the
SYSLMOD file) is executed in a subsequent JOB step:

// EXEC OLG,LIBw'BBE.FRAZER.BASICO2',
// PARM.L-'LIST,MAP,LET', I
// PARM.G-'ISASIZE(iiK),R'

//L.SYSLMOD DD DSNwxxi,.xxx.xxx(yyy),
// DISP-(NEWCý.TLG),UNITwSAVE,
// SPACE-(3156,(60,20,2),RLSE)
//L.SYSIN DD *

INCLUDE SYSLIB(URLIM)
ENTRY PLISTART/*

//G.SYSIN DD *

(input data, as required) 1
//G.READFIL DD DSN-xyz.abc,DISP-SHR

The PARM.G statement passes parameters to the executing pro- I
gram and are described in detail in the preceding discussion. The
input files required by the program are included at the end of the !

Ref. 16. "System 360 Model 91 User's Guide," APL/JHU BCS-I:40,
November 1973. 1

Ref. 17. "IBM OS Linkage Editor and Luader," Eleventh Edition,
IBM File No. S360/S370-31, Order No. GC28-6538-I0, April 1973. 3
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JCL prefixed with "G.7' to irdicate the second job step (named
"G") in the same way as the .ink-editor step files are prefixed
with "L."

Complete Executable Programs

Once a complete executable program has been created (as de-
scribed above or by the use of other cataloged procedures), an
execution may be obtained by providing O9 .ith the proper time and
region requirements as well as the required file definitions (via
DD cards). The JCL givqn below is an example of what can be spe-
cified:

// EXEC PGM-URLIM,
// REGION-rrrK,
I/ TIME-tt,
// PPARM-'ISASIZE(iiiK),REPORT'
//STEPLIB DD DSN-xxx.xxx.xxx,DISP=SHR
//PLIDUMP DD SYSOUTYJA
//SYSIN DD *

(input data to follow here)

//READFIL DD DSN.qxy•.abc,DISP-SHR

In this example, the EXEC card specifies (via the PGM- state-
ment) the member within the PDS named on the STEPLIB card (in this
case the data set named xxx.xxx.xxx) that contains the completely
executable program. (This example is consistent with the examples
above for OL and OLG in that the names coincide.) The EXEC card
asks for rrrK (rrr-thousand) bytes ("characters") of storage and
requests tt minutes of CPU time. (The time request can be speci-
fied in minutes and seconds as "TIME=(mm,ss)"]. Additionally, a
parameter is passed to the e:,ecuting program as "PARM-...." This
parameter specifies that the Initial Storage Area (ISA) is to be
liiK bytes long and that a storage report is to be given. The
significance of the ISASIZE, and the interpretation of the REPORT
are discussed above in the section on Dynamic Storage. The
STEPLIB card names the data set containing the program to be exe-
cuted (URLIM in th'is instance). The PLIDUHP file is the print file
onto whiuch the REPORT will be written. The SYSIN file includes
inpvt required by the program and expected from the file SYSIN.
The READFIL file is indicative of how files other than SYSIN can
be used for supplying input data to the various READ routines (e.g.,
READRK). These routines, according to values supplied as argu-
ments, can read the required data hzom any file named by a DD
statement included with the JCL ft the execution of the jcb; the
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card "//READFIL DD ... ' above describes such a file. Other spe-
cific exavples of these auxiliary files are given in the READ rou-
tine usage descriptions in Vol. 2 of this report.

This demonstrates the way in which an URLIM or SHTP program
module can be assembled and executed in an IBM OS 360 system en-
vironment. There are other ways of accomplishing the same results
and the experienced user will experiment with and exploit such
avenues that prove beneficial to his needs. I

I
I
I

I
I
I
I
I
I

I
I
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LIST OF SYMBOLS

Symbol Definition and Assumed Units

A area (ft 2 )

a sonic velocity (ft/s)

bi radial position

C vector of heat capacity values for each node (Btu/ft 3 -oR)

CNr, CAr normal and axial force coefficients for the radome

CI, C2  constants in Planck's equation (Eq.(23)) and others

cf friction coefficient

c specific heat (Btu/lbm-*R), equal to du/dt

c specific heat (Btu/ibm-°R)
p

d wall thickness or length measure (in.)4 D antenna aiameter (in.); arbitrary constant

Eb black body irradiance (Btu/ft 2-s)

E grey body irradiance (Btu/ft 3-s)

Ei Young's Modulus of the ith subregion (lb/in2)

Ae/e0 boresight error slope (deg/deg)

FNr, FAr normal and axial forces acting on the radome shape (Ibf)

Af/f 0 percent change in frequency

F x, F resultant forces acting on radome in x and y"X ~ directions (ioi)

hi heat transfer coefficient (ibm/ft 2-s)
H the vector of total conductance for each node n

(Btu/h-*R)

I value of the general integral J F(x)dx

i enthalpy (Btu/lbm)

k thermal conductivity (Btu/ft-*R-h)

K the net thermal conductivity between two dissimilar
cc materials, including contact resistance (Btu/ft-0 R-h)

K number of nodes connected to node n via internal
conduction
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L length measure (ft)

M Mach number

m radome mass (ibm)

M 0 resultant bending moment acting at radome's base (in.-lbf)

Nu Nusselt number, equal to c ph lX/k
Pr Prandtl number equal to Vc /k

P, p pressure (lbf/ft 2)

Q heat flow vector (Btu/h)

q magnitude of heat flow vector (IQI) (Btu/h)

q generalized heat flux term (Btu/ft 2 -h)

q generalized heat generation term (Btu/h-ft 3 )

•h the number of independent heat flux sources exchangingheat with node n
R number of nodes connected to node n via radiation, or I

relaxation factor

R gas constant (ft-lbf/lbm-*R)

R resultant force (lbf)

Rb radome base radius (in.)

r radial coordinate (ft)

r recovery factor

r reflectivity 3
St Stanton number a q/V(ir - i )r w)

T, T temperature (*R)

t time (s or h)

t thickness (in.)
Ui

u internal energy (Btu/Ibm)
V velocity (ft/s)

V volume (ft 3 ) 1

v specific volume (ibm/ft )
x, y, z spatial coordinates (ft) 3
X, Y coordinate axes or generalized functional values

(i.e., X- f(Y))

Z compressibility of a gas I
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Greek Symbols
a absorptivity i

a thermal expansion coefficient (*R-l) S

a, a ,constants in heat transfer correlations

ratio of specific heats

gradient vector operator (ft-1 )

error correction term (OR)
C emissivity

{C dielectric constart

6, angular coordinates (rad)

0 quadrant elevation angle (rad) :
S~~wavelength (in.) ,

fluid viscosity (ibm/ft-s)

V Poisson's ratio

a Stephan-Boltzmann constant (0.174 x 108 Btu/ft 2 -h-R 4 )

Sfluid/wall shear stress (lbf/in2)
2

a axial direction stress (lb/in

oe circumferential direction stress (lb/in2)

a radial direction stress (lb/in 2

4 electrical thickness of radome wall
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ERRATA SHEET FOR APL/JHU TG 1293A,

URLIM - A Unified Radome Limitations Computer Program,

Volume 1 - Theoretical Background

"Zi

1. Change Eq. 35 (p. 30) to:

uIbii l " u ~b iI l i -1 to (n-i1) ,(35)Uib+1 U ilb+l

2. Change the third line of the paragraph following Eq. 40
(p. 31) to:

stitution of these into Eqs. (29) through (31) yields , a, and
ri 6ei

3. Change the first line of the paragraph following Eq. 51c
(p. 45) to:

The stresses caused by these forces are distributed around

4. Change the equation on the sixth line of p. 61 to:

-2C/r3 + (2/r)(C/r 2) W 0 ,

5. Change the third line following Eq. 69 (p. 66) to:

T. Combining Eqs. (68) and (69) yields:

6. Change the third line of the last paragraph on p. 66 to:

correction factors (Qo/Q' 0 ). The heating rate for each node (Q)
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7. Change Eq. 75 (p. 68) to:

akn-i f'1 [(Tn + TI)/2(
= T =2 2(75)

n

8. Change the fourth line of the second paragraph following
Eq. 76 (p. 68) to:

on the initial guess for the temperaturz field (T0 ); (2) the

9. Change the first line of the second paragraph on p. 70 to:

The above system shows nodes 1 through n as regular inter-

10. Change the eighth line on p. 74 to:

is the extent of the vector Xa then i is set to n-l. Exactly

11. Change the fifteenth line of the second paragraph on p. 79 to:

age (c.f. Appendix F of Vol. 2 of this report). When employing

12. Change the last line of the second paragraph on p. 79 to:

Vol. 2 of this report).

13. Change the seventh line on p. 87 to:

R. W. Newman and D. Brockelbank for their suggestions and assistance


